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Research conducted with the support of NASA Grant NCC2-275 has been focused in the

main on the development of fuzzy logic and soft computing methodologies and their applications

to systems analysis and control, with emphasis on problem areas which are of relevance to

NASA's missions.

One of the principal results of our research has been the development of a new methodol-

ogy called Computing with Words (CW). Basically, in CW words drawn from a natural language

are employed in place of numbers for computing and reasoning. There are two major imperatives

for computing with words. First, computing with words is a necessity wen the available informa-

tion is too imprecise to justify the use of numbers, and second, when there is a tolerance for

imprecision which can be exploited to achieve tractability, robusmess, low solution cost, and bet-

ter rapport with reality. Exploitation of the tolerance for imprecision is an issue of central impor-

tance in CW.

In CW, the premises constitute the initial data set (IDS), which is assumed to consist of a

collection of propositions expressed in a natural language. For purposes of computation, the

propositions are expressed as canonical forms which serve to place in evidence the fuzzy con-

straints that are implicit in the premises. Then, the rules of inference in fuzzy logic are employed

to propagate the constraints from premises to conclusions. As a final step, the induced constraints

are re-translated into a natural language, resulting in what is referred to as the terminal data set

(TDS).

A canonical form of a proposition p is expressed as

X isrR

where X is the constrained variable, R is the constraining relation and isr is a variable copula in

In particular, a possibilistic con-which the variable r defines the way in which R constrains X.

straint ( r = blank) is expressed as

XisR

and signifies that R is the possibility distribution of X. Similarly,



X ispP

in which P is a probability distribution, signifies that P is the probability distribution of X.

A canonical form ofp serves to represent the meaning ofp by placing in evidence the

implicit constrained variable X and the implicit constraining relation R. The clepth of p provides a

rneasure of the difficulty of explicitating X and R.

One of the important objectives of our research was to develop a better understanding of

the process of explicitation for fairly complex propositions exemplified by "It is unlikely that

there will be a significant increase in the level of ozone in the stratosphere in the near future."

Another irnportant objective was to develop coxnputationally efficient ways of applying the rules

of inference in fuzzy logic to the propagation of constraints from premises to conclusions. In this

context, our attention was focused on the so-called generalized extension principle which is

expressed as

f(X) is R

g(X) is g(f-l(R))

where X is a database variable,fiX) is a given function of X which is constrained by R, and g(X)

represents the query. In general, employment of the generalized expansion principle reduced the

computation of the terrninal data set to the solution of a nonlinear program. In addition, we have

explored the possibility of applying genetic computilag to the solution of this problem.

Another ilnportant direction which was pursued relates to the development of fuzzy infor-

mation granulation (fuzzy IG) as a basic metlaodology for the conception, design, construction

and utilization of inforrnation/intelligent systems.

In essence, fuzzy information granulation may be viewed as a mode of generaliza-

tion which may be applied to any concept, method or theory. Related to fuzzy IG are the follow-

ing principal modes of generalization.

(a) fuzzification (f-generalization).

by a fuzzy set.

(b) granulation (g-generalization).

(c) randomization (r-generalization).

111this rnode of gerleralization, a crisp set is replaced

In this case, a set is partitioned into granules.

In this case, a variable is replaced by a random



variable.

(d) usualization (u-generalization). In this case, a proposition expressed as X is A is

replaced with usually ( X is A ).

These and other modes of generalization may be employed in combination. A

combination that is of particular importance is the conjunction of fuzzification and granulation.

This combination plays a pivotal role in the theory of fuzzy information granulation and fuzzy

logic, and is referred to as f.g-generalization (or f-granulation or fuzzy granulation).

As a mode of generalization, f.g-generalization may be applied to any concept,

method or theory. In particular, in application to the basic concepts of variable, function and rela-

tion, f.g-generalization leads -- in fuzzy logic -- to the basic concepts of linguistic variable, fuzzy

rule set and fuzzy graph. These concepts are unique to fuzzy logic and play a central role in its

applications.

The distinctive concepts of f-generalization, g-generalization, r-generalization and

f.g-generalization make a significant contribution to a better understanding of fuzzy logic and its

relation to other methodologies for dealing with uncertainty and imprecision. In particular, crisp

g-generalization of set theory and relational models of data lead to rough set theory. F-generaliza-

tion of classical logic and set theory leads to multiple-valued logic, fuzzy logic in its narrow sense

and parts of fuzzy set theory. But it is f.g-generalization that leads to fuzzy logic (FL) in its wide

sense and underlies most of its applications. This is a key point that is frequently overlooked in

discussions about fuzzy logic and its relation to other methodologies.

The point of departure in the theory of fuzzy information granulation is the con-

cept of a generalized constraint. A generalized constraint on the values of a variable X is

expressed as X isr R, where R is the constraining relation, isr is a variable copula and r is a



discretevariablewhosevaluedefinestheway in whichR constrains X.

The principal types of constraints and the values of r which define them are the

following:

1. Possibilistic constraint, i" = blank. In this case, if R is a fuzzy set with membership function

_tR :U ---) [0, 1], and X is a disjunctive (possibilistic) variable, that is, a variable which cannot be

assigned two or more values in U simultaneously, then

XisR

means that R is the possibility distribution of X.

X is R ---) Poss{X =

More specifically,

u} = taR(u), ue U.

2. Veristic constraint, i" = v. In this case, if R is a fuzzy set with membership function laA, and

X is a conjunctive (veristic) variable, that is, a variable which can be assigned two or more values

in U simultaneousl)q then

X isvR--_Ver{X = u} = lale(u),u_ U

where Ver[X = u } is the verity (truth value) of X = u.

It is important to observe that, in the case of a possibilistic constraint, the fuzzy set

R plays the role of a possibility distribution, whereas in the case of a veristic constraint R plays

the role of a verity distribution. What this implies is that, in general, any fuzzy -- and ipso facto

any crisp -- set R admits of two different interpretations. More specifically, in the possibilistic

interpretation the grades of membership are possibilities, while in the veristic interpretation the

grades of membership are verities (truth values). Since in most cases constraints are possibilistic,

the default assumption is that a fuzzy set plays the role of a possibility distribution.



3. Probabilistic constraint, r = p. In this case, X isp R means that X is a random variable and

R is the probability distribution (or density) of X. For exarnple,

,.)

X isp N(m, _)

means that X is a normally distributed random variable with mean m and variance or'. Similarly,

X isp (0.2_1 + 0.4',/) + 0.4\c )

means that X takes the values a, b, c with respective probabilities 0.2, 0.4 and 0.4.

4. Probability value constraint, 1 = _.. In this case,

X is_ R

signifies that what is constrained is the probability of a specified event, X is A. More specifi-

cally,

X is_. R -_ Prob{X is A } is R.

For example, if A = small and R = likely, then

X is_. likely

means that

Prob{X is small} is likely.

5. Ra,dom set consttwint, r = rs. In this case,

X isrs R

is a composite constraint which is a combination of probabilistic and possibilistic (or veristic)

constraints. In a schematic form, a random set constraint may be represented as

Y isp P



or

(x,Y) is Q

x isrs R

Y isp P

(X,Y) isv Q

X isrs R

where Q is a joint possibilistic (or veristic) constraint on X and Y, and R is a random set, that is,

a set-valued random variable. It is of interest to note that the Dempster-Shafer theory of evidence

is in essence a theory of randorn set constraints.

A question that arises is: What purpose is selwed by having a large variety of con-

straints to choose from. A basic reason is that, in a general setting, information may be viewed as

a constraint on a variable.

More generally, in the context of computing with words, a basic assumption is that

a proposition, p, expressed in a natural language may be interpreted as a generalized constraint

p _ X isr R.

In this interpretation, X isr R is the canonical form of 17. The function of the canonical fonn is

to place in evidence, i.e., explicitate, the implicit constraint which p represents.

In CW, the depth of explicitation of a proposition is a measure of the effort

involved in explicitating 17, that is, translating, p into its cannical form. In this sense, the propo-

sition X isr R is a surface constraint (depth = zero). A proposition such as "X is smalr' is shal-

low, whereas "it is not very likely that there will be a significant increase in the price of oil in the

near future" is not.

The information conveyed by a proposition expressed in a natural language is, in



general, too complex to adrnit of representation as a sirnple, crisp constraint. Tiffs is the main rea-

son why in representing the rneaning of a proposition expressed in a natural language we need a

wide variety of constraints which are subsumed under the rubric of generalized constraints.

Beyond the development of the basic methodologies of computing with words and

fuzzy information granulation, we have begun to explore their applications to knowledge repre-

sent_tion, data mining, evolutionary computing and decision-making in an environment of irnpre-

cision, uncertainty and partial truth. In these applications, the available information is assumed to

be granular in nature, reflecting the finite ability of the hu,-nala mind and sensing devices to resolve

detail. In particular, in the case of evolutionary computing and reinforcement learning, a basic

assumption that is made is that evaluation functions are described as fuzzy graphs or, equivalently,

by collections of fuzzy if-then rules.

A unifying idea which played a key role in our research is that in rnany real-world prob-

lems there is a built-in tolerance for imprecision. The effectiveness of the techniques of fuzzy

logic derives from the fact that they exploit the tolerance for imprecision by simplifying the cola-

trol strategies and enhancing their robustness. The importance of neural networks stems from

their ability to learn from observations. The effectiveness of genetic aIgorithms results from their

ability to optimize systems perforrnance. In combination, these techniques form the core of soft

computilag.
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